Машинное обучение

765 612

Перед вами один из самых интересных учебников по машинному обучению – разделу искусственного интеллекта, изучающего методы построения моделей, способных обучаться, и алгоритмов для их построения. Автор воздал должное невероятному богатству предмета и не упустил из вида объединяющих принципов. Читатель с первых страниц погружается в машинное обучение в действии, но без не нужных на первых порах технических деталей. По мере изучения предмета тщательно подобранные примеры, сопровождаемые иллюстрациями, постепенно усложняются.
В книге описан широкий круг логических, геометрических и статистических моделей, затрагиваются и такие находящиеся на переднем крае науки темы, как матричная факторизация и анализ РХП. Особое внимание уделено важнейшей роли признаков. Устоявшаяся терминология дополняется введением в рассмотрение новых полезных концепций. В конце каждой главы приводятся ссылки на дополнительную литературу с авторскими комментариями.
Книга ясно написана и хорошо организована. Начав с основ, автор умело ведет читателя, знакомя его с полезными фактами и подробно описывая ряд методов машинного обучения. Приводится также псевдокод ключевых алгоритмов.
Благодаря всему этому книга задает новый стандарт изучения такой сложной дисциплины как машинное обучение.

Перед вами один из самых интересных учебников по машинному обучению – разделу искусственного интеллекта, изучающего методы построения моделей, способных обучаться, и алгоритмов для их построения. Автор воздал должное невероятному богатству предмета и не упустил из вида объединяющих принципов. Читатель с первых страниц погружается в машинное обучение в действии, но без не нужных на первых порах технических деталей. По мере изучения предмета тщательно подобранные примеры, сопровождаемые иллюстрациями, постепенно усложняются.
В книге описан широкий круг логических, геометрических и статистических моделей, затрагиваются и такие находящиеся на переднем крае науки темы, как матричная факторизация и анализ РХП. Особое внимание уделено важнейшей роли признаков. Устоявшаяся терминология дополняется введением в рассмотрение новых полезных концепций. В конце каждой главы приводятся ссылки на дополнительную литературу с авторскими комментариями.
Книга ясно написана и хорошо организована. Начав с основ, автор умело ведет читателя, знакомя его с полезными фактами и подробно описывая ряд методов машинного обучения. Приводится также псевдокод ключевых алгоритмов.
Благодаря всему этому книга задает новый стандарт изучения такой сложной дисциплины как машинное обучение.

Weight776 g
Dimensions22 × 15 × 2.54 cm
Формат

70×100/16

Издательство

Переплет

Автор

Стандарт

10

Год выпуска

Количество страниц

400

SKU

477617

Формат, мм\см

170×240

Язык

Тираж

100